Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[MatrixCombine] - equiprojectable decomposition of a list of regular chains
Calling Sequence
MatrixCombine(lrc, R)
MatrixCombine(lrc, R, lm)
Parameters
R
-
polynomial ring
lrc
list of regular chains of R
lm
list of matrices with coefficients in R
Description
The function call MatrixCombine(lrc, R, lm) returns the equiprojectable decomposition of the variety given by lrc, and the corresponding combined matrices.
The variety encoded by lrc is the union of the regular zero sets of the regular chains of lrc.
It is assumed that every regular chain in lrc is zero-dimensional and strongly normalized, and that all matrices in lm have the same format.
It is also assumed that lrc and lm have the same number of elements.
This command is part of the RegularChains package, so it can be used in the form MatrixCombine(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[MatrixCombine](..).
Examples
Consider a polynomial ring with three variables
Consider the following four regular chains of R
Consider the following four matrices over R
We view each matrix as a result obtained modulo the corresponding regular chain in the given order. We combine these four results as follows
The four cases cannot be combined into a single one. In fact, we obtained the following two cases
The two ideals generated by rc1 and rc2 are obviously relatively prime (no common roots in z) so the Chinese Remaindering Theorem applies. However, if we try to recombine them, we create a polynomial in y with a zero-divisor as initial. This is forbidden by the properties of a regular chain.
See Also
Equations, EquiprojectableDecomposition, ExtendedRegularGcd, Matrix, PolynomialRing, RegularChains, Triangularize
Download Help Document