Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][PolynomialMapImage] - compute the image of a variety under a polynomial map
Calling Sequence
PolynomialMapImage(F, PM, R, S)
PolynomialMapImage(F, H, PM, R, S)
PolynomialMapImage(CS, PM, R, S)
Parameters
F
-
list of polynomials in R
PM
R
polynomial ring (source)
S
polynomial ring (target)
H
CS
constructible set
Description
The command PolynomialMapImage(F, PM, R, S) returns a constructible set cs which is the image of the variety under the polynomial map PM.
The command PolynomialMapImage(F, H, PM, R, S) returns a constructible set cs which is the image of the difference of the variety by the variety under the polynomial map PM.
The command PolynomialMapImage(CS, PM, R, S) returns a constructible set cs which is the image of the constructible set CS under the polynomial map PM.
Both rings R and S should be over the same base field.
The variable sets of R and S should be disjoint.
The number of polynomials in PM is equal to the number of variables of ring S.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form PolynomialMapImage(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][PolynomialMapImage](..).
Examples
The following example is related to the Whitney umbrella.
See Also
ConstructibleSet, ConstructibleSetTools, Difference, MakePairwiseDisjoint, Projection, RegularChains
Download Help Document