Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][ConstructibleSet] - construct a constructible set from a list or set of regular systems
Calling Sequence
ConstructibleSet(lrs, R)
Parameters
lrs
-
list or set of regular systems
R
polynomial ring
Description
The command ConstructibleSet(lrs, R) returns a constructible set defined by the list lrs of regular systems.
A point belongs to a constructible set if and only if it is a solution of one of its defining regular systems. That is, a constructible set is the union of the solution sets of its defining regular systems.
Since a regular system always defines a nonempty set, a constructible set is empty if and only if its list of defining regular systems is empty.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form ConstructibleSet(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][ConstructibleSet](..).
See ConstructibleSetTools and RegularChains for the related mathematical concepts, in particular for the ideas of a constructible set, a regular system, and a regular chain.
Examples
This example demonstrates how to build a constructible set structure.
First, define a polynomial ring.
Consider the following linear polynomial system.
The command Triangularize with lazard option decomposes the solution set by means of regular chains. Each regular chain describes a group of solutions with certain mathematical meaning. See RegularChains for more information.
To build constructible sets, you first need to create regular systems. For simplicity, just let be the inequation part of each regular system.
Then is a list of regular systems by which you can create a constructible set cs.
Use Info to see its internal defining polynomials.
See Also
ConstructibleSetTools, Info, QuasiComponent, RegularChains, RegularSystem, RepresentingChain, RepresentingInequations, RepresentingRegularSystems, Triangularize
Download Help Document