Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][SeparateSolutions] - decomposition into pairwise disjoint regular chains
Calling Sequence
SeparateSolutions(l_rc, R)
Parameters
l_rc
-
list of regular chains
R
polynomial ring
Description
The command SeparateSolutions(l_rc, R) returns a list of square-free regular chains such that the ideals they generate are pairwise relatively prime.
The input regular chains must be zero-dimensional.
The algorithm is based on GCD computations.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form SeparateSolutions(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][SeparateSolutions](..).
Examples
Consider a polynomial ring with two variables
Consider two regular chains in R
These two regular chains share a common solution. The union of their zero sets can be made disjoint. In other words we can replace these two regular chains by another set of regular chains such that the two sets decribe the same solutions and the second one consists of pairwise disjoint zero sets of regular chains. This is done as follows
See Also
Equations, NumberOfSolutions, PolynomialRing, RegularChains, Triangularize
Download Help Document