Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][RemoveRedundantComponents] - remove redundant quasi-components from a list of regular chains
RegularChains[SemiAlgebraicSetTools][RemoveRedundantComponents] - remove redundant quasi-components from a list of regular semi-algebraic systems
Calling Sequence
RemoveRedundantComponents(lrc, R)
RemoveRedundantComponents(lrsas, R)
Parameters
lrc
-
list of regular chains
lrsas
list of regular semi-algebraic systems
R
polynomial ring
Description
The command RemoveRedundantComponents(lrc, R) returns a list of regular chains whose quasi-components are pairwise noninclusive and such that lrc and are Lazard decompositions of the same algebraic variety. Consequently, this command removes from those quasi-components that are redundant for inclusion.
The command RemoveRedundantComponents(lrsas, R) returns a list of regular semi-algebraic system whose zero sets are pairwise noninclusive, and such that lrsas and have the same zero set.
For more details, see Algorithm 35 in the Ph.D. thesis of Yuzhen Xie.
Compatibility
The RegularChains[SemiAlgebraicSetTools][RemoveRedundantComponents] command was introduced in Maple 16.
The lrsas parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
Consider a polynomial ring with two variables
Consider two regular chains in R
The solutions of one are contained in those of the other. The redundant one will be removed as follows
The case of semi-algebraic system.
See Also
ChainTools, EqualSaturatedIdeals, IsContained, IsIncluded, IsInSaturate, PolynomialRing, RegularChains
References
Xie, Y. "Fast Algorithms, Modular Methods, Parallel Approaches and Software Engineering for Solving Polynomial Systems Symbolically" Ph.D. Thesis, University of Western Ontario, Canada, 2007.
Download Help Document