Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][Lift] - lift a regular chain
Calling Sequence
Lift(F, R, rc, e, m)
Parameters
F
-
list of polynomials of R
R
polynomial ring
rc
regular chain of R
e
positive integer or a variable of R
m
positive integer or a coefficient of R
Description
The function Lift returns a lifted regular chain over R lifted from the regular chain rc. That is, the output regular chain reduces every polynomial of F to zero over R as long as rc does so under an image of R. This command works for two types of images of R. If R has characteristic 0, it lifts from an image of finite characteristic. If R has finite characteristic, it lifts from an image with fewer variables.
More precisely, if e is a positive integer, then the base field is assumed to be the field of rational numbers and rc reduces every polynomial of F modulo m, where m is greater than or equal to . If e is a variable, then the base field is assumed to be a prime field and rc reduces every polynomial of F modulo e-m, where e is a variable of R and m belongs to the base field.
In both cases, F must be a square system, that is the number of variables of R is equal to the number of elements of F. In the former case, rc and e-m must form a zero-dimensional normalized regular chain which generates a radical ideal in R. In the latter case, rc must be a zero-dimensional normalized regular chain which generates a radical ideal in R modulo m.
In the former case, the Jacobian matrix of F must be invertible modulo rc and e-m. In the latter case, the Jacobian matrix of F must be invertible modulo rc and m.
The function uses Hensel lifting techniques. If e is a positive integer then e is used as an upper bound on the number of lifting steps.
For the case where e is variable, FFT polynomial arithmetic is used. This implies that the ring R should satisfy the hypotheses of the commands from the FastArithmeticTools subpackage.
Examples
First we consider an example where coefficients are lifted.
Next we consider an example where a variable is lifted.
See Also
Equations, FastArithmeticTools, JacobianMatrix, MatrixInverse, PolynomialRing, RegularChains, Triangularize
Download Help Document