Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[IdealMembership] - test for ideal membership
PolynomialIdeals[IdealContainment] - test for ideal containment
Calling Sequence
IdealMembership(f, J)
IdealContainment(J, K, ...)
f in J
J subset K
Parameters
f
-
polynomial, or list or set of polynomials
J, K
polynomial ideals
Description
The IdealMembership command tests elements for membership in an ideal. If the first argument is a list or set of polynomials, IdealMembership returns true if and only if all of the elements are members of the ideal. The criterion for ideal membership is Groebner[NormalForm](f, J) = 0.
The IdealContainment command tests whether ideals are contained within one another, and can test sequences of containments from left to right. It returns true if and only if all containments are valid. For example, IdealContainment(J, K, L) tests whether J is contained in K and K is contained in L.
A particularly useful form of the IdealContainment command is IdealContainment(J, K, J), which tests whether the ideals J and K are equal.
The functionality of these commands is also available through the in and subset operators, see PolynomialIdeals[Operators] for more information.
Examples
See Also
expand, Groebner[Basis], Groebner[NormalForm], PolynomialIdeals, PolynomialIdeals[Operators]
Download Help Document