Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[HilbertDimension] - compute the Hilbert dimension of an ideal
PolynomialIdeals[MaximalIndependentSet] - compute a maximal independent set of variables
PolynomialIdeals[IsZeroDimensional] - test if an ideal is zero-dimensional
Calling Sequence
HilbertDimension(J, X)
MaximalIndependentSet(J, X)
IsZeroDimensional(J, X)
Parameters
J
-
polynomial ideal
X
(optional) set of ring variable names
Description
The HilbertDimension command computes the Hilbert dimension of an ideal.
The MaximalIndependentSet command computes a maximal independent set of variables for an ideal J in . This set has the property that . The cardinality of this set is an invariant, equal to the Hilbert dimension of the ideal. These commands require a total degree Groebner basis.
The IsZeroDimensional command tests only whether an ideal has Hilbert dimension zero. This can be done using any Groebner basis. In cases where the dimension is not zero, some computation is avoided.
An optional second argument can be used to override the variables of the polynomial ring.
Examples
J is in Q[w, x, y, z].
See Also
Groebner[Basis], Groebner[HilbertDimension], Groebner[IsZeroDimensional], MonomialOrders, PolynomialIdeals, PolynomialIdeals[EliminationIdeal], PolynomialIdeals[IdealInfo]
References
Becker, T., and Weispfenning, V. Groebner Bases. New York: Springer-Verlag, 1993.
Download Help Document