Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
OrthogonalSeries[DerivativeRepresentation] - take differential representation transform of a series
Calling Sequence
DerivativeRepresentation(S, x, optional_root)
DerivativeRepresentation(S, x1,.., xn, optional_root)
DerivativeRepresentation(S, [x1,.., xn], optional_root)
Parameters
S
-
orthogonal series
x, x1, .., xn
names
optional_root
(optional) equation of the form root = val where val is a symbol representing a root of the polynomial associated with the expansion family
Description
The DerivativeRepresentation(S, x) calling sequence returns a series equal to S written in terms of the family of polynomials produced by differentiating the S polynomials with respect to x.
The DerivativeRepresentation(S, x1,.., xn) and DerivativeRepresentation(S, [x1,.., xn]) calling sequences are equivalent to the recursive calling sequence DerivativeRepresentation(...DerivativeRepresentation(S, x1),..., xn).
The partial differential representation can be used for continuous hypergeometric polynomials with a degree 2 sigma polynomial. The partial differential representation (with respect to the root xi for the polynomials poly(n, x) depending on x in the series S) is obtained by using the DerivativeRepresentation(S, x, root=val) calling sequence. If val is not a root of the sigma associated with poly(n, x), an error message is returned. The DerivativeRepresentation(S, x1,.., xn, root=val) and DerivativeRepresentation(S, [x1,.., xn], root=val) calling sequences assume that all polynomials depending on x1,.., xn share the common root val. Otherwise, an error is returned.
Examples
Find the partial differential representation for Jacobi polynomials. In this case, sigma(x) = x^2-1.
Error, (in OrthogonalSeries:-DerivativeRepresentation) -2 is not a root of x^2-1
See Also
JacobiP, LaguerreL, OrthogonalSeries, OrthogonalSeries[Create]
Download Help Document