Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Ore_algebra[skew_algebra] - declare an Ore algebra
Calling Sequence
skew_algebra(t_1=l_1,..., t_n=l_n, options)
Parameters
t_i
-
types of commutation
l_i
lists of indeterminates whose lengths are determined by the corresponding t_i
options
(optional) options described below
Description
The skew_algebra command declares an Ore algebra and returns a table that can be used by other functions of the Ore_algebra package.
An Ore algebra is an algebra used to represent linear operators that apply to functions or sequences, such as linear differentiation or recurrence operators. It is an algebra of skew polynomials in the indeterminates ruled by the following commutation relations: for any polynomial P in and any i in .
Any pair or commute. The sigma_is are algebra endomorphisms and the delta_is are additive functions that moreover satisfy the following skew Leibniz rule:
Weyl algebras are a special case of Ore algebras, obtained when all operators are differentiation operators. For more information, see Ore_algebra[Weyl_algebra].
The lists l_i involve the x_is and d_is, where the names x_i and the d_i may not be assigned. Each list l_i consists of a pseudo-differential indeterminate d_i followed by one or more of the x_js.
The string t_i represents the type of the pseudo-derivative d_i. It is either a predefined type or a user-defined type. Possible commutations are described in Ore_algebra[commutation_rules].
Though Ore algebras are noncommutative algebras, they are represented with the standard commutative Maple product. Every Ore_algebra function dealing with elements of an Ore algebra uses its normal form where all d_i appear on the right of the corresponding x_i. A monomial , meant as a normal form, can therefore be printed either or .
The sum in Ore algebras is performed by using the `+` of Maple, while the product is performed by the Ore_algebra function skew_product (see the Examples section below).
Options are available to control the ground ring of the algebra and the action of the operators on Maple objects. See Ore_algebra[declaration_options].
Examples
The following call declares an Ore algebra built on a differential operator Dx and on a shift operator Sn. It also prepares the use of a function in the coefficients of the polynomials.
This is the name of a table. Products in the algebra are performed using skew_product.
The following declaration, however, is forbidden.
Error, (in Ore_algebra:-skew_algebra) indeterminate x may appear in a single commutation only
See Also
Ore_algebra, Ore_algebra/skew_product, Ore_algebra/Weyl_algebra
Download Help Document