Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[JordanBlockMatrix] - construct a Matrix of Jordan blocks
Calling Sequence
JordanBlockMatrix(K, d, options)
Parameters
K
-
list of ordered pairs of the form [eigenvalue, dimension]
d
(optional) non-negative integer; dimension of the resulting Matrix
options
(optional); constructor options for the result object
Description
The JordanBlockMatrix(K) function, where K is a list of ordered pairs [a, b], constructs a Matrix in which each diagonal block is a b-dimensional Jordan block defined by a.
The JordanBlockMatrix(K, d) function acts like JordanBlockMatrix(K) except that a d x d Matrix is returned.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
By default, the JordanBlockMatrix function constructs a Matrix by using the band[0, 1] shape and storage.
This function is part of the LinearAlgebra package, and so it can be used in the form JordanBlockMatrix(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[JordanBlockMatrix](..).
Examples
See Also
LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[CompanionMatrix], LinearAlgebra[DiagonalMatrix], LinearAlgebra[MinimalPolynomial], Matrix
Download Help Document