Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[CreatePermutation] - convert a NAG pivot vector to a permutation Vector or Matrix
Calling Sequence
CreatePermutation(V, d, o, options)
Parameters
V
-
Pivot Vector (NAG form)
d
(optional) nonnegative integer; dimension(s) of output
o
(optional) equation of the form output = obj where obj is one of 'Vector' or 'Matrix', or a list containing one of these names; selects format of the output object
options
(optional); constructor options for the result object
Description
The CreatePermutation(V) function constructs a permutation Vector or Matrix from a NAG pivot vector. By default, the resulting object is a Vector of rectangular storage and integer datatype or a Matrix of sparse storage and integer datatype.
A pivot vector V in NAG form, returned for example by an LU decomposition of a Matrix A, has all integer entries. Its ith element is the ordinal of the row of the partially row-reduced Matrix which is selected as the ith choice of pivoting row. Prior to performing the ith pivot, row i and row V[i] of the partially row-reduced Matrix are swapped.
A returned permutation Vector U has as its ith entry the ordinal of the row of A such that, if all U[i]th rows of A were permuted to the ith row, i = 1 .. n, then no swapping would be required to do the factorization with the exact same choices of pivot rows. The default datatype of a returned permutation Vector is integer.
A returned permutation Matrix M has all entries with value 1 or 0. Premultiplying A by M permutes A to a Matrix whose factorization would require no row swapping in order to use the sames choices of pivot values. The ith pivoting row of M . A would be the ith row of M . A (i.e., no pivoting is required to compute the decomposition of M . A). The default datatype of a returned permutation Matrix is integer. The default storage is sparse.
If the optional nonnegative integer parameter d is provided then the dimension(s) of the output object have the value d. This value must be greater than or equal to the dimension of the input Vector V. This allows the shortened form of a pivot vector used by NAG when the number of rows of an LU factorizable Matrix A is larger than the number of its columns. For example, the pivot vector Vector[column](3, [6, 6, 6]) is equivalent to the pivot vector Vector[column](6, [6, 6, 6, 4, 5, 6]).
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix or Vector constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
This function is part of the LinearAlgebra package, and so it can be used in the form CreatePermutation(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[CreatePermutation](..).
Examples
See Also
Matrix, Vector
Download Help Document