Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Modular][IntegerLinearSolve] - solution of a linear integer coefficient system using modular methods
Calling Sequence
IntegerLinearSolve(A, rcol, meth)
Parameters
A
-
Matrix (possibly augmented)
rcol
number of columns that represent variables
meth
(optional) argument of the form method='chrem' or method='padic' (the default)
Description
The IntegerLinearSolve function constructs the rational solution(s) of a linear integer coefficient system in Matrix form. This is a programmer level function, it does not perform argument checking. Thus, argument checking must be handled external to this function.
It is possible to solve systems with an arbitrary number of augmented columns. If one augmented column is present, the output is a Vector with dimension rcol. If multiple augmented columns are present, the output is a Matrix where each column is of length rcol and represents the solution for the corresponding right-hand side vector in the augmented part of the input Matrix.
It is also possible to obtain solutions with free parameters. These free parameters represent the nullspace vectors of the input Matrix, and are output after the solution. In this case, the output is a sequence.
Note: Regardless of the number of augmented columns, the trailing nullspace is described by Vectors with dimension rcol.
The default method is to solve the system modulo a machine-sized prime and construct rational solutions using p-adic lifting. For large linear systems or systems with large solutions this is the fastest method. The optional argument method='padic' forces the use of this method.
Alternatively, one can specify the optional argument method='chrem' and the system will be solved modulo multiple primes and the solution recovered using the Chinese remainder theorem. This method can be faster in some cases; however, it is a probabilistic approach. Information on controlling the probabilistic behavior can be found in EnvProbabilistic.
This function is also available in LinearSolve as method='modular'.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form IntegerLinearSolve(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][IntegerLinearSolve](..).
Examples
A 3x3 system with 1 augmented column.
A 3x3 system with 3 augmented columns.
A rank deficient 3x3 system with 3 augmented columns.
A rank deficient 4x4 matrix which returns nullspace only.
An inconsistent 3x3 system.
Error, (in LinearAlgebra:-Modular:-IntegerLinearSolve) system is inconsistent
See Also
LinearAlgebra/Details, LinearAlgebra[LinearSolve], LinearAlgebra[Modular]
Download Help Document