Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Generic][BareissAlgorithm] - apply the Bareiss algorithm to a Matrix
Calling Sequence
BareissAlgorithm[D](A)
BareissAlgorithm[D](A,r,d)
Parameters
D
-
the domain of computation
A
rectangular Matrix of values in D
r
name
d
Description
The (indexed) parameter D specifies the domain of computation, an integral domain (a commutative ring with exact division). It must be a Maple table/module which has the following values/exports:
D[`0`] : a constant for the zero of the ring D
D[`1`] : a constant for the (multiplicative) identity of D
D[`+`] : a procedure for adding elements of D (nary)
D[`-`] : a procedure for negating and subtracting elements of D (unary and binary)
D[`*`] : a procedure for multiplying elements of D (binary and commutative)
D[`=`] : a boolean procedure for testing if two elements of D are equal
D[Divide] : a boolean procedure for testing if a | b in D, and if so assigns q the value of a / b.
BareissAlgorithm[D](A) runs Bareiss' fraction-free row reduction on a copy of A.
The output Matrix B is upper triangular, and the entry B[i,i] is the determinant of the principal i x i submatrix of A. Thus if A is a square Matrix of dimension n, then B[n,n] is the determinant of A up to a unit.
Examples
Z[Divide] := proc(a,b,q) evalb( irem(args) = 0 ) end proc:
See Also
LinearAlgebra[Generic], LinearAlgebra[Generic][Determinant], LinearAlgebra[Generic][GaussianElimination]
Download Help Document