Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LREtools[ValuesAtPoint] - formulas for the values of the solution of difference equation and its derivatives of the given order and at the given point.
Calling Sequence
ValuesAtPoint(L, E, fun, HalfInt_opt, Point_opt, Order_opt)
Parameters
L
-
linear difference operator in E with coefficients which are polynomials in x
E
name of the shift operator acting on x
fun
function f(x) that is a solution of
HalfInt_opt
(optional) 'HalfInterval'= A, A is a rational number, 0 by default
Point_opt
(optional) 'Point'=p, p is a rational number or an algebraic number in the indexed RootOf representation (see,RootOf,indexed), 0 by default
Order_opt
(optional) 'OrderDer'=m, m is non-negative integer, 0 by default.
Description
The ValuesAtPoint command returns formulas for the values of the function and its derivatives of the given order and at the given point in Point_opt. It also computes conditions for the analyticity of the function at the given point.
The input includes a difference operator
L := sum(a[i](x)* E^i,i=1..d);
and the point A. Specify the point 'Point'=p to compute the value f(x) and its derivatives at , and non-negative integer via the option Order_opt to specify the highest order of required derivatives of f(x) at
The procedure returns 2 sets:
The set of conditions. f(x) is assumed to be analytic on some open set which contains a set . Elements of the set give the conditions of the analyticity of f(x) at . They are relations between the values of the function and, possibly several of its derivatives at the points into .
The set of formulas for computing ,...,. (f(x) must satisfy the conditions in the first set.) These formulas give the values of ,..., as linear combinations of f(x) and several of its derivatives in . For , we have one unique formula for .
Examples
See Also
LREtools, LREtools[AnalyticityConditions], LREtools[IsDesingularizable]
References
Abramov, S.A., and van Hoeij, M. "Set of Poles of Solutions of Linear Difference Equations with Polynomial Coefficients." Computation Mathematics and Mathematical Physics. Vol. 43 No. 1. (2003): 57-62.
Download Help Document