Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GraphTheory[RandomGraphs][RandomBipartiteGraph]
Calling Sequence
RandomBipartiteGraph(n,p,options)
RandomBipartiteGraph(n,m,options)
RandomBipartiteGraph([a,b],p,options)
RandomBipartiteGraph([a,b],m,options)
Parameters
n, a, b
-
positive integers
p
real number between 0.0 and 1.0
m
non-negative integer
options
sequence of options (see below)
Description
RandomBipartiteGraph(n, p) creates an undirected unweighted bipartite graph on n vertices where each possible edge is present with probability p.
RandomBipartiteGraph(n, m) creates an undirected unweighted bipartite graph on n vertices and m edges where the m edges are chosen uniformly at random.
RandomBipartiteGraph([a,b], p) creates an undirected unweighted bipartite graph on a+b vertices with partite sets of sizes a and b, where each possible edge is present with probability p.
RandomBipartiteGraph([a,b], m) creates an undirected unweighted bipartite graph on a+b vertices with partite sets of sizes a and b, and with m edges chosen uniformly at random.
If the option weights=m..n is specified, where m <= n are integers, the graph is a weighted graph with edge weights chosen from [m,n] uniformly at random. The weight matrix W in the graph has datatype=integer, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.
If the option weights=x..y where x <= y are decimals is specified, the graph is a weighted graph with numerical edge weights chosen from [x,y] uniformly at random. The weight matrix W in the graph has datatype=float[8], that is, double precision floats (16 decimal digits), and if the edge from vertex i to j is not in the graph then W[i,j] = 0.0.
If the option weights=f where f is a function (a Maple procedure) that returns a number (integer, rational, or decimal number), then f is used to generate the edge weights. The weight matrix W in the graph has datatype=anything, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.
The random number generator used can be seeded using the randomize function.
Examples
See Also
AssignEdgeWeights, GraphTheory[ChromaticIndex], GraphTheory[IsBipartite], GraphTheory[Neighbors], GraphTheory[WeightMatrix], RandomDigraph, RandomGraph, RandomNetwork, RandomTournament, RandomTree
Download Help Document