Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[Transformation] - create a transformation or mapping from one manifold to another
Calling Sequence
Transformation(M, N, Eq)
Transformation(M, N, A)
Parameters
M
-
an unassigned Maple name or string, the domain for the transformation
N
an unassigned Maple name or string, the range for the transformation
Eq
a list of equations specifying each range variable as a function of the domain variables
A
a Matrix
Description
The Transformation command creates an internal data structure for a mapping between two frames. This internal data structure contains information regarding the transformation (domain, range, prolongation order, transformation type (projectable, point, contact, differential substitution etc.), and the Jacobian of the transformation). Once a mapping between frames has been encoded using the Transformation command, the mapping can then be using to transform vectors, differential forms and tensors using the Pushforward, Pullback, and PushPullTensor commands in the DifferentialGeometry package and in the Tensor subpackage.
If M and N are the names of initialized Lie algebras, then the second calling sequence can be used to define a linear transformation from M to N with matrix representation A.
This command is part of the DifferentialGeometry package, and so can be used in the form Transformation(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-Transformation.
Examples
Define 4 different manifolds:
Example 1.
Define a transformation from R to Q, that is, the parametric representation of a space-curve.
Example 2.
Define a transformation presenting the mapping in the complex plane z -> w = z^3.
We use the real and imaginary parts of w to define the components of the transformation. We can set up the transformation as a map from M to N or as a map from M to itself.
Example 3.
Define a transformation encoding the change from polar to Cartesian coordinates.
Example 4.
Define a transformation from P to Q which parameterizes the hyperboloid of revolution z^2 = 1 + x^2 + y^2.
Example 5.
Define the canonical projection map [x, y, z] -> [x, y] from Q to M.
Example 6.
The command DGinfo can be used to access various attributes of a transformation.
Example 7.
Where an adapted frame is used, the Jacobian is computed relative to that frame. Here is a simple example:
Example 8.
Here we use the second calling sequence to define a Lie algebra homomorphism between two Lie algebras. See the LieAlgebraData help page for information on creating Lie algebras with Maple.
Initialize a Lie algebra Alg1 which will serve as the domain for the Lie algebra homomorphism.
Initialize a Lie algebra Alg2 which will serve as the range for the Lie algebra homomorphism.
Define a matrix which will determine the linear transformation from Alg1 to Alg2.
The output indicates that phi sends e1 to 0f1, e2 to f3, e3 to f2, and e4 to f1 - f3. The LieAlgebras Query command allows us to check that phi is a Lie algebra homomorphism.
See Also
DifferentialGeometry, Tools, ApplyTransformation, ComposeTransformations, DGinfo, InverseTransformation, Pullback, Pushforward, PushPullTensor
Download Help Document