Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[DGmap]
Calling Sequence
DGmap(n, f, X, arg1, arg2, ..., argN)
Parameters
n
-
a positive integer
f
a Maple procedure
X
any DifferentialGeometry object
argN
(optional) arguments for the procedure f
Description
The command DGmap is similar to the command map. DGmap will apply the procedure f to the coefficients of the object X. The integer n indicates the position of the coefficients of X in the argument list of f. Thus DGmap(1, f, X, arg1, arg2, ..., argN) will replace the coefficient C of X with f(C, arg1, arg2, ..., argN); DGmap(2, f, X, arg1, arg2, ..., argN) will replace the coefficient C of X with f(arg1, C, arg2, ..., argN); and so on.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGmap(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGmap.
Examples
Define a manifold M with local coordinates [x, y].
Example 1.
Define a vector field X depending on parameters C1 and C2. Differentiate the coefficients of X with respect to C1 and C2.
Example 2.
Define a differential 1-form omega depending on a parameter t. Integrate the coefficients of omega with respect to t from t = 0 .. 1
Example 3.
Evaluate the tensor T at x = 0 by taking the limit of the coefficients as x -> 0.
Example 4.
Substitute s = 1 into the transformation Phi:
See Also
DifferentialGeometry, Tools, Transformation
Download Help Document