Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[TraceFreeRicciTensor] - calculate the trace-free Ricci tensor of a metric tensor
Calling Sequences
TraceFreeRicciTensor(g)
TraceFreeRicciTensor(g, C)
TraceFreeRicciTensor(g, R)
Parameters
g - the metric tensor on the tangent bundle of a manifold
C - the curvature tensor of the metric g
R - the Ricci tensor of the metric g
Description
Let be a metric tensor with associated Ricci tensor R and Ricci scalar S. The trace-free Ricci tensor P is the symmetric, rank 2 covariant tensor with components , where is the dimension of the underlying manifold. It is trace-free with respect to the metric in the sense that where are the components of the inverse metric.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form TraceFreeRicciTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-TraceFreeRicciTensor.
Examples
Example 1.
In this example we calculate the trace-free Ricci tensor for a metric.
Calculate the trace-free Ricci tensor for the metric directly.
We check that is trace-free by computing the inverse metric and using the ContractIndices command.
The same calculation can be done with the TensorInnerProduct command.
Example 2.
The third calling sequence can be applied to any rank 2 symmetric tensor to construct a trace-free, rank 2 symmetric tensor.
The tensor is already trace-free, so its trace-free part is itself.
The trace-free part of the metric itself is always 0.
The trace-free part of is
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], SectionalCurvature, RicciScalar, Physics[Ricci], RicciSpinor, NPCurvatureScalars
Download Help Document