Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[SectionalCurvature] - calculate the sectional curvature for a metric
Calling Sequences
SectionalCurvature(g, R, X, Y)
Parameters
g - a metric tensor on the tangent bundle of a manifold
R - the curvature tensor of the metric g, calculated from the Christoffel symbol of g
X, Y - a pair of vectors
Description
The sectional curvature of the metric g at a point p is the Gaussian curvature K (at p) of the geodesic surface whose tangent space is spanned by X_p and Y_p. If R' is the covariant form of the curvature tensor (that is,R' is a tensor of type (0,4)), then K = R'(X, Y, X, Y)/(g(X, X) g(Y, Y) - g(X, Y)^2).
If K is independent of the choice of the vectors X and Y then K =S/(n*(n-1)), where S is the Ricci scalar of g.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SectionalCurvature(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:- SectionalCurvature(...).
Examples
Example 1.
First create a 2 dimensional manifold M1 and define a metric g1 on M1.
For 2-dimensional manifolds the sectional curvature coincides with the Gaussian curvature R_{1212}/det(g). Let us check this formula.
Example 2.
First create a 3 dimensional manifold M2 and define a metric g2 on M2.
Define a pair of vectors which span a generic tangent plane.
Calculate the curvature and sectional curvature. Note that the sectional curvature is independent of the parameters r, s, t appearing in the vector fields X and Y.
Since the metric g2 has constant sectional curvature and the dimension of M2 is 3, the sectional curvature is 1/6 the Ricci scalar.
Example 3.
We re-work the previous example in an orthonormal frame.
Calculate the sectional curvature.
Example 4.
First create a 3 dimensional manifold M4 and define a metric g4 on M4.
Calculate the curvature and sectional curvature. In this example, the sectional curvature is dependent on the parameters r, s, t appearing in the vector fields X and Y.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CurvatureTensor, Physics[Riemann], DGinfo, RicciTensor, Physics[Ricci]
Download Help Document