Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[RearrangeIndices] - rearrange the argument/indices of a tensor
Calling Sequences
RearrangeIndices(T, P)
RearrangeIndices(T, C)
Parameters
T - a tensor of rank r
P - list of integers, giving a permutation of the integers 1..r
C - a list of lists of integers, describing a permutation as the composition of cycles
Description
We describe, by example, the conventions used to define a permutation. The list P = [2, 3, 1, 5, 4] denotes a permutation acting on a 5 element list A by sending the the first element of A to the second slot, the second element of A to the third slot and so on. Thus, if we apply P to A = [a, b, c, d, e] the result is [c, a, b, e, d]. The same permutation can be written in cycle notation as C = [[1, 2, 3], [4, 5]]. As another example the permutation which interchanges b with c in the list A is defined in permutation notation by P = [1, 3, 2, 4, 5] or in cycle notation as C = [2, 3].
A tensor T is a multi-linear map whose arguments are vectors or forms. The command RearrangeIndices defines a new tensor by rearranging the arguments of T according to the permutation P. For example, if T is a rank 3 covariant tensor and S = RearrangeIndices(T, [3, 2, 1]) then S(X, Y, Z) = T(Z, Y, X).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RearrangeIndices(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RearrangeIndices.
Examples
Example 1.
First create a 3 dimensional manifold M and define two tensors T1 and T2 on M.
Interchange the arguments for the tensor T1.
Interchange argument 1 with 2 and argument 3 with 4 in the tensor T2. This can be done in two ways, by specifying a permutation or a list of cycles.
Cyclicly permute the last 3 arguments of T2. This can be done in two ways, by specifying a permutation or a list of cycles.
Cyclicly permute all 4 arguments of T2. This can be done in two ways, by specifying a permutation or a list of cycles.
Example 2.
Arguments of different spatial types can also be rearranged. Define a rank 2 vector bundle E over a 2 dimensional base.
See Also
DifferentialGeometry, Tensor, SymmetrizeIndices
Download Help Document