Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[RainichConditions] - check that a metric tensor satisfies the Rainich conditions
Calling Sequences
RainichConditionsoption)
Parameters
g - a metric tensor
R - the Ricci tensor
CR - a rank 3 tensor, the covariant derivative of the Ricci tensor
alpha - (optional) an unevaluated name
option - the keyword argument output = "tensor"
Description
Let be a space-time metric on a 4-dimensional manifold. The Rainich conditions are necessary and locally sufficient conditions for there to exist a non-null electromagnetic fielda non-null 2-form satisfying the source-free Maxwell equations) such that the Einstein equations hold. Here is the Einstein tensor and is the electromagnetic energy-momentum tensor. The Rainich conditions apply only to those metrics for which the Ricci tensor is non-null, that is,
There are 2 algebraic Rainich conditions and 1 differential condition
C1: C2: C3: d= 0, where
Space-times which satisfy these Rainich conditions are called electro-vac space-times.
If the Rainich conditions hold, then an electromagnetic fieldwhich solves the Einstein-Maxwell equations can be found. See RainichElectromagneticField.
The command RainichConditions returns true or false. With output = "tensor", the 3 tensors defined by the left-hand sides of the equations C1, C2, C3 are returned. If the argument alpha is present, then the value of the 1-form in C3 is assigned to alpha.
For subsequent computations with RainichElectromagneticField it is more efficient to first calculate/simplify the Ricci tensor and its covariant derivative and then to use the second calling sequence.
Examples
with(DifferentialGeometry): with(Tensor):
Example 1.
We define a space-time metric and check that the Rainich conditions hold.
DGsetup([t, x, y, z], M):
g := evalDG(4/3*t^2* dx &t dx + t*(exp(-2*x)* dy &t dy + exp(2*x)*dz &t dz) - dt &t dt);
1. First calling sequence.
RainichConditions(g);
2. To use the 2nd calling sequence first calculate the Ricci tensor and its covariant derivative.
R := RicciTensor(g);
C := Christoffel(g);
CR := CovariantDerivative(R, C);
RainichConditions(g, R, CR);
3. Let's see the value of the 1-fom from equation C3.
RainichConditions(g, R, CR, 'alpha');
alpha;
Example 2
We consider a metric depending upon 2 arbitrary functions and determine those functions for which the Rainich conditions hold.
g := (1/x^2) &mult evalDG(A(x)*dx &t dx + B(x)*dy &t dy + 1/z^2*dz &t dz - z^2*dt &t dt);
Here are the Rainich conditions. The first condition is too complicated to display here, but the 2nd and 3rd are simple.
C1, C2, C3 := RainichConditions(g, output = "tensor"):
C2, C3;
To impose the Rainich conditions, we set the coefficients of the tensors and to zero. The command DGinfo/"CoefficientSet" gives us these coefficients. Again, they are too long to display here.
Eq := Tools:-DGinfo(C1, "CoefficientSet") union Tools:-DGinfo(C2, "CoefficientSet"):
We see that there are a total of 5 scalar conditions on .
nops(Eq);
Here is one of the Rainich conditions.
Eq[1];
We use pdsolve to solve all the Rainich conditions.
solution := pdsolve(Eq);
For these values of the metric defines an electro-vac space-time.
See Also
DifferentialGeometry, CovariantDerivative, DGinfo, EinsteinTensor, EnergyMomentumTensor, RainichElectromageticField, RicciTensor, Tensor
Download Help Document