Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[PermutationSymbol] - create a permutation symbol
Calling Sequences
PermutationSymbol(indexType, fr)
Parameters
indexType - a string, one of the 4 possible index types "cov_bas", "con_bas", "cov_vrt", or "con_vrt"
fr - (optional) the name of a defined frame
Description
A permutation symbol is a tensor density which is fully skew-symmetric and whose component values are + 1 or - 1. The rank of the permutation symbol is the dimension of the manifold M, or the base or fiber dimension of a vector bundle E. The covariant permutation symbol is a tensor density of weight - 1 while the contravariant permutation symbol is a tensor density of weight 1.
The command PermutionSymbol(indexType) returns the permutation symbol of the type specified by indexType in the current frame unless the frame is explicited specified.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form PermutationSymbol(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-PermutationSymbol.
Examples
Example 1.
Create a 2 dimensional manifold M.
Here are the 2 different permutation symbols one can define on M. For each we use the DGinfo command to display the tensor type -- recall that the first list characterizes the index type and the second list the tensor density weight.
Example 2.
Create a rank 2 vector bundle E over a 3 dimensional base.
Here are the 4 different permutation symbols one can define on E and their tensor types.
See Also
DifferentialGeometry, Tensor, DGinfo, KroneckerDelta, Physics:-LeviCivita. Physics:-KroneckerDelta
Download Help Document