Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[MetricDensity] - use a metric tensor to create a scalar density of a given weight
Calling Sequences
MetricDensity(g, r)
Parameters
g - a metric tensor
r - a rational number
option - (optional) the keyword argument detmetric
Description
If g is a metric with components g_{ij}, then rho = (determinant(g_{ij}))^(r/2) is a scalar density of weight r.
The program MetricDensity(g, r) returns the scalar density rho.
It is assumed that the metric g has positive determinant. To calculate the proper metric density with respect to a metric with negative determinant, include the keyword argument detmetric = -1.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form MetricDensity(...) only after executing the commands with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-MetricDensity.
Examples
Example 1.
First create a manifold M and define a metric tensor on the tangent space of M.
Use g to make a tensor density of weight 1.
Display the density type of rho1.
Example 2.
For indefinite metrics, the optional argument detmetric = -1 can be used to ensure that the metric density is real.
Example 3.
First create a rank 3 vector bundle E over a two-dimensional manifold M and define a metric tensor on the fibers of E.
Use g3 to make a tensor density of weight -1.
Display the density type of rho3.
See Also
DifferentialGeometry, Tensor, DGinfo, RaiseLowerIndices, Physics[g_]
Download Help Document