Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[Laplacian] - find the Laplacian of a differential form with respect to a metric.
Calling Sequences
Laplacian(g, omega)
Parameters
g - a covariant metric tensor on an n-dimensional manifold M
omega - a differential form on M
Description
The Laplace-Beltrami operator Delta is the second order linear differential operator which acts on p-forms omega by Delta(omega) = (d o delta + delta o d) (omega).
The delta differential operator is the first-order linear differential operator defined in terms of the exterior derivative operator d and the Hodge star operator * by
delta(omega) = (-1)^(k)(* d *)(omega),
where omega is a p-form and k = n*p +n +1. The form delta(omega) has degree p-1. Since a metric tensor is needed to define the Hodge star operator * , a metric is also needed to define delta.
The Laplacian(g, omega) computes the Laplacian Delta(omega) of the differential form with respect to the metric tensor g.
The command Laplacian:-ExteriorDerivativeStar(g, omega) computes delta(omega).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Laplacian(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-Laplacian.
Examples
Define a manifold M with coordinates [x, y, z] and a metric g on M.
Example 1.
Define a differential 1-form alpha and suppress the printing of the arguments of its coefficients with the PDEtools[declare] command.
Compute the Laplacian of alpha.
Example 2.
Define a 2 form beta and compute its Laplacian.
Example 3.
Compute the delta derivative of the 2 form beta.
See Also
DifferentialGeometry, Tensor, ExteriorDerivative, HodgeStar
Download Help Document