Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[KroneckerDeltaSpinor] - create the Kronecker delta spinor
Calling Sequences
KroneckerDeltaSpinor(spinorType, ,fr)
Parameters
spinorType - a string, either "spinor" or "barspinor"
fr - (optional) the name of a defined frame
Description
The Kronecker delta spinor is the type (1,1) spinor whose components in any coordinate system are given by the identity matrix.
The command KroneckerDeltaSpinor(spinorType) returns a Kronecker delta spinor of the type specified by spinorType in the current frame unless the frame is explicitly specified.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDeltaSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDeltaSpinor.
Examples
Example 1.
First create a vector bundle M with base coordinates [x, y, z, t] and fiber coordinates [z1, z2, w1, w2].
Here are the 2 Kronecker delta spinors one can define:
Define some other manifold N.
The current frame is N. Because there are no fiber variables, one cannot calculate a Kronecker delta spinor in this frame. To now re-calculate the Kronecker delta spinor KK1, either use the ChangeFrame command or pass KroneckerDeltaSpinor the frame name M as a second argument.
Example 2.
The Kronecker delta spinor defines an identity mapping on spinors of the indicated type. The linear transformation associated to the Kronecker delta spinor K is defined by contracting the covariant index of K against the contravariant index of the spinor S1. We see that the result is S2 = S1 so that the linear transformation defined by K is indeed the identity transformation.
See Also
DifferentialGeometry, Tensor, BivectorSolderForm, CanonicalTensors, KroneckerDelta, PermutationSymbol, SolderForm
Download Help Document