Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[KroneckerDelta] - find the Kronecker delta tensor of rank r
Calling Sequences
KroneckerDelta(spatialType, r, fr)
Parameters
spatialType - a string, either "bas" or "vrt"
r - a non-negative integer
fr - (optional) the name of a defined frame
Description
The Kronecker delta tensor K of rank r is the type (r, r) tensor which is defined as follows. Let I be the type (1, 1) tensor whose components in any coordinate system are given by the identity matrix, that is, for any vector field I(X) = X. Then K is obtained from the r-fold tensor product of I fully skew-symmetrizing over all the covariant indices.
The command KroneckerDelta(spatialType, r) returns the rank r Kronecker delta tensor K of the type specified by indexType in the current frame unless the frame is explicited specified.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDelta(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDelta.
Examples
Example 1.
We create a 3 dimensional manifold M with coordinates [x, y, z].
Define the 3 different Kronecker delta tensors on M.
We check that the contraction of K3 gives a multiple of K2 and that the contraction of K2 gives a multiple of K1.
We check that K2 can be constructed from K1 tensor K1 by rearranging the indices and by skew-symmetrization.
Example 2.
We create a 2 dimensional vector bundle over E with fiber coordinates [p, q].
Define the possible Kronecker delta tensors on the fibers of E.
See Also
DifferentialGeometry, Tensor, ContractIndices, RearrangeIndices, SymmetrizeIndices, PermutationSymbol, Physics[LeviCivita], Physics[KroneckerDelta]
Download Help Document