Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[InverseMetric] - find the inverse of a metric tensor
Calling Sequences
InverseMetric(g)
Parameters
g - a metric tensor
Description
A metric tensor g is a symmetric, non-degenerate, rank 2 covariant tensor. The inverse of a metric tensor is a symmetric, non-degenerate, rank 2 contravariant tensor h. The components of h are given by the inverse of the matrix defined by the components of g.
InverseMetric(g) calculates the inverse of the metric tensor g.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form InverseMetric(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-InverseMetric.
Examples
Example 1.
First create a manifold M and define a metric tensor on the tangent space of M.
Calculate the inverse of g.
Check the result -- the contraction of h with g should be the type (1, 1) tensor whose components are the identity matrix.
Example 2.
First create a rank 3 vector bundle E on M and define a metric on the fibers.
See Also
DifferentialGeometry, Tensor, ContractIndices, RaiseLowerIndices, Physics[g_]
Download Help Document