Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[HodgeStar] - apply the Hodge star operator to a differential form
Calling Sequences
HodgeStar(g, omega)
Parameters
g - a metric tensor
omega - a differential form
Description
The Hodge star operator is customarily denoted by * and maps p-forms on an n-dimensional manifold to (n - p)-forms. To define the Hodge star operator, let omega_1, omega_2, ..., omega_n be an orthonormal basis of 1-forms with respect to the metric g. Pick integers i_1, i_2, ..., i_r with 1 <= i_1 < i_2 < ... <i_r <= n and let 1 <= j_1 < j_2 < ... < j_s <= n be the complementary set of integers (r = n - s). Let
omega = omega_{i_1} &w omega_{i_2} &w... omega_{i_r}. Then *(omega) = (+/-) omega_{j_1} &w omega_{j_2} &w ... omega_{j_s},
where the sign (+/-) is chosen so that omega &w *(omega) = omega_1 &w omega_2 &w ... omega_n.
The program HodgeStar(g, omega) returns the Hodge star of the form omega with respect to the metric g.
The program HodgeStar(g, omega) calculates *(omega) as follows. [i] Convert omega to skew-symmetric, covariant rank r tensor T. [ii] Fully contract T with the contravariant permutation symbol and multiply by the weight 1 scalar density defined by the metric g. The result is a skew-symmetric contravariant rank n-r tensor S. [iii] Lower all the indices of S with the metric g and convert the resulting skew-symmetric, contravariant rank n-r tensor to a differential form.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form HodgeStar(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-HodgeStar.
Examples
Example 1.
First create a 5 dimensional manifold M and define a metric tensor g on the tangent space of M.
The standard basis dx1, dx2, ..., dx5 is an orthonormal basis for g and therefore the Hodge star is easily computed.
Example 2.
To show the dependence of the Hodge star upon the metric g, we consider a general metric on a 2 dimensional manifold.
Example 3.
The Laplacian of a function with respect to a metric g can be calculated using the exterior derivative operation and the Hodge star operator.
To illustrate this result, we use the Euclidean metric in polar coordinates [r, theta].
To simplify the definition of the Laplacian, we define the Hodge operator with g fixed.
To display the Laplacian of phi in compact form we invoke the PDEtools[declare] command.
Here is the formula for the Laplacian in terms of Hodge and ExteriorDerivative. Recall that @ is the composition of functions.
Example 4.
The HodgeStar program also works in the more general context of a vector bundle E over M.
See Also
DifferentialGeometry, Tensor, DGinfo, ExteriorDerivative, MetricDensity, PermutationSymbol, RaiseLowerIndices
Download Help Document