Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[GeodesicEquations] - calculate the geodesic equations for a symmetric linear connection on the tangent bundle
Calling Sequences
GeodesicEquations (C, Gamma, t)
Parameters
C - a list of functions of a single variable, defining the components of a curve on a manifold M with respect to a given system of coordinates
Gamma - a connection on the tangent bundle to a manifold M
t - the curve parameter
Description
Let M be a manifold and let nabla be a symmetric linear connection on the tangent bundle of M. If C is a curve in M with tangent vector T, then the geodesic equations for C with respect to the connection nabla is the system of second order ODEs defined by nabla_T(T) = 0.
The procedure GeodesicEquations(C, Gamma, t) returns the vector nabla_T(T).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form GeodesicEquations(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-GeodesicEquations.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
To determine the geodesic equations for nabla we first define a curve on M by specifying a list of functions of a single variable t.
The program GeodesicEquations returns a vector whose components are the components of the geodesic equations.
To solve these geodesic equations use DGinfo to obtain the coefficients of V as a list. Pass the result to dsolve to solve this system of 2 second order ODEs.
See Also
DifferentialGeometry, Tensor, Christoffel, Connection, CovariantDerivative, DGinfo, DirectionalCovariantDerivative, ParallelTransportEquations
Download Help Document