Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[CovariantDerivative] - calculate the covariant derivative of a tensor field with respect to a connection
Calling Sequences
CovariantDerivative(T, C1, C2)
Parameters
T - a tensor field
C1 - a connection
C2 - (optional) a second connection, needed when the tensor T is a mixed tensor defined on a vector bundle E -> M
Description
Let M be a manifold, let nabla be a linear connection on the tangent bundle of M, and let T be a tensor field on M. Then the covariant derivative of T with respect to nabla is nabla(T) = nabla_{E_i}(T) &t theta^i, where the vector fields E_1, E_2, ..., E_n define a local frame on M with dual coframe theta_1, theta_2, ..., theta_n. The tensor nabla_{E_i}(T) is the directional covariant derivative of T with respect to nabla in the direction of E_i. The definition of the covariant derivative for sections of a vector bundle E -> M and for mixed tensors on E is similar.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CovariantDerivative(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CovariantDerivative.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
Define some tensor fields and compute their covariant derivatives with respect to C1.
To obtain a directional covariant derivative in the direction of a vector field X from the covariant derivative, contract the last index of the covariant derivative against the vector field.
Example 2.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
Define some tensor fields and compute their covariant derivatives with respect to C2.
Example 3.
First create a rank 3 vector bundle E on M and define a connection on E.
To covariantly differentiate a mixed tensor on E, a connection on M is also needed.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, ContractIndices, CurvatureTensor, Physics[Riemann], DirectionalCovariantDerivative
Download Help Document