Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[CheckKillingTensor] - check that a tensor is the Killing tensor for a given metric or connection
Calling Sequences
CheckKillingTensor(g, T)
CheckKillingTensor(C, T)
Parameters
g - a covariant metric tensor on a manifold M
T - a symmetric covariant tensor on M, or a list of such
C - an affine connection on a manifold M
Description
This program simply computes the symmetrized covariant derivative of T with respect to the Christoffel symbols of the metric g or the connection C, that is, it computes the Killing tensor equation for T.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CheckKillingTensor(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:CheckKillingTensor.
Examples
with(DifferentialGeometry): with(Tensor):
Example 1.
Check that K1 is a Killing tensor for the metric g.
DGsetup([x, y], M):
g := evalDG((1/y)*dx &t dx + 1/x*dy &t dy);
K1 := evalDG((1/y^3)*dx &t dx &t dx - (1/x^3)*dy &t dy &t dy);
CheckKillingTensor(g, K1);
Example 2.
Determine the equations for A(y) and B(x) that must be satisfied for K2 to be a Killing tensor for the metric g from Example 1.
K2 := evalDG(A(y)*dx &t dx &t dx + B(x)*dy &t dy &t dy);
P := CheckKillingTensor(g, K2);
Tools:-DGinfo(P, "CoefficientSet");
See Also
DifferentialGeometry, Tensor, CovariantDerivative, SymmetrizeIndices
Download Help Document