Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[BelRobinson] - calculate the Bel-Robinson tensor
Calling Sequences
BelRobinson(g, W, indexlist)
Parameters
g - a metric tensor on a 4-dimensional manifold
W - (optional) the Weyl tensor of the metric g
indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"
Description
The Bel-Robinson tensor B_{ijhk} is a covariant rank 4 tensor defined in terms of the Weyl tensor W_{ijhk} on a 4-dimensional manifold by (see, for example, Penrose and Rindler Vol. 1)
B_{ijhk} = 1/4 (W_{ilhm}W_j^l_k^m - 1/2 (g_{ij} W_{lmhn} + g_{il} W_{mjhn} + g_{im} W_{jlhn}) W^{lm}_k^n).
The Bel-Robinson tensor is totally symmetric: B_{ijhk} = B_{jihk} = B_{hjik} = B_{kjhi}.
The Bel-Robinson tensor is trace-free: g^{ij} B_{ijhk} = 0.
If g is an Einstein metric, that is, R_{ij} = Lambda g_{ij} (where R_{ij} is the Ricci tensor for the metric g and Lambda is a constant), then the covariant divergence of Bel-Robinson vanishes: g^{il} nabla_l(B_{ijhk}) = 0. Here nabla_l denotes the covariant derivative with respect to the Christoffel connection for g.
The keyword argument indexlist = ind allows the user to specify the index structure for the Bel-Robinson tensor. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form B^{ijhk} is returned.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BelRobinson(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BelRobinson.
Examples
Example 1.
First create a 4-dimensional manifold M and define a metric g on M. The metric shown below is a homogenous Einstein metric (see (12.34) in Stephani, Kramer et al).
Calculate the Bel-Robinson tensor for the metric g. The result is clearly a symmetric tensor.
Use the optional keyword argument indexlist to calculate the contravariant form of the Bel-Robinson tensor.
The tensor B is trace-free.
The covariant divergence of the tensor B1 vanishes. To check this, first calculate the Christoffel connection C for the metric g and then calculate the covariant derivative of B1.
The divergence of the Bel-Robinson tensor is not automatically zero; the divergence vanishes when the metric g is an Einstein metric. To check this, compute the Ricci tensor of g.
The Weyl tensor, if already calculated, can be used to quickly compute the Bel-Robinson tensor.
See Also
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, RicciTensor, WeylTensor
Download Help Document