Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[Radical] - find the radical of a Lie algebra
Calling Sequences
Radical(LieAlgName)
Parameters
LieAlgName - (optional) name or string, the name of a Lie algebra
Description
The radical Radical(g) of a Lie algebra g is the largest solvable ideal contained in g.
Radical(LieAlgName) calculates the radical of the Lie algebra g defined by LieAlgName. If no argument is given, then the radical of the current Lie algebra is found.
A list of vectors defining a basis for the radical of g is returned. If the radical of g is trivial, then an empty list is returned.
The radical of any Lie algebra g can be calculated as the orthogonal complement of the derived algebra of g with respect to the Killing form. See, for example, Fulton and Harris "Representation Theory", Graduate Texts in Mathematics 129, Springer 1991, Proposition C.22 page 484.
The command Radical is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Radical(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Radical(...).
Examples
Example 1.
First we initialize a Lie algebra.
We calculate the radical of Alg1 to be the 4 dimensional ideal [e4, e5, e6, e7] and check that the result is indeed a solvable ideal.
We remark that A = [e1, e4, e5, e6, e7] is a solvable subalgebra but it is not an ideal.
See Also
DifferentialGeometry, LieAlgebras, LeviDecomposition, Nilradical, Query[Ideal], Query[Solvable]
Download Help Document