Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Nilpotent] - check if a Lie algebra is nilpotent
Calling Sequences
Query(Alg, "Nilpotent")
Query(S, "Nilpotent")
Parameters
Alg - (optional) the name of an initialized Lie algebra
S - a list of vectors defining a basis for a subalgebra
Description
A Lie algebra g is nilpotent if the k-th element D_k(g) in the low central series for g is 0 for some k >= 0.
Query(Alg, "Nilpotent") returns true if Alg is a nilpotent Lie algebra and false otherwise. If the algebra is unspecified, then Query is applied to the current algebra.
Query(S, "Nilpotent") returns true if the subalgebra S is a nilpotent Lie algebra and false otherwise.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
We initialize three different Lie algebras.
Alg1 and Alg2 are nilpotent but Alg3 is not.
The subalgebra S1 = [z1, z2, z3] of Alg3 is nilpotent but the subalgebra S2 = [z1, z4] is not.
See Also
DifferentialGeometry, LieAlgebras, Query
Download Help Document