Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[MinimalSubalgebra] - find the smallest Lie subalgebra containing a given set of vectors from a Lie algebra, find the smallest matrix algebra containing a given set of matrices
Calling Sequences
MinimalSubalgebra(S)
MinimalSubalgebra(M)
Parameters
S - a list of vectors in a Lie algebra
M - a list of square matrices
Description
MinimalSubalgebra(S) calculates the smallest Lie subalgebra containing the list of vectors S from a defined Lie algebra g. A list of basis vectors for the subalgebra from the Lie algebra g is returned.
MinimalSubalgebra(M) calculates the smallest matrix algebra containing the matrices in the list M.
The command MinimalSubalgebra is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form MinimalSubalgebra(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-MinimalSubalgebra(...).
Examples
Example 1.
First we initialize a Lie algebra and display the multiplication table.
Find the minimal subalgebra containing [e1, e3].
Find the minimal subalgebra containing [e2, e3].
Find the minimal subalgebra containing [e2, e5].
Example 2.
The command MinimalSubalgebra also works with matrices.
We can use the LieAlgebraData command to verify that the set of matrices N defines a 4-dimensional Lie algebra and to determine the commutator relationships.
Here e1, e2, e3, e4 denote the four matrices N[1], N[2], N[3], N[4].
See Also
DifferentialGeometry, LieAlgebras, LieAlgebraData , MinimalIdeal, Query[Subalgebra]
Download Help Document