Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebraData[FormStructureEquations] - convert a list of exterior derivative equations to a Lie algebra data structure
Calling Sequence
LieAlgebraData(FormStructureEquations, Basis, AlgName)
Parameters
FormStructureEquations - a list of equations of the form d(theta_k) = - C[i, j, k] theta_i &w theta_j (sum on i and j with i < j)
Basis - a list of unassigned names [theta_1, theta_2, ..., theta_N] which defines a basis for the dual 1-forms of the Lie algebra
AlgName - a name or string, the name to be assigned to the Lie algebra
Description
The command DGsetup is used to initialize a Lie algebra -- that is, to define the basis elements for the Lie algebra and its dual and to store the structure constants for the Lie algebra in memory. The first argument for DGsetup is a Lie algebra data structure which contains the structure constants in a standard format used by the LieAlgebras package.
One commonly used format for the structure equations of a Lie algebra is the set of exterior derivative equations for the dual 1-forms of the Lie algebra. For a 1-form theta in the dual of a Lie algebra, the exterior derivative is the 2-form defined by d(theta)(x,y) = - theta([x ,y]). The function LieAlgebraConvert enables one to create a Lie algebra in Maple from a list of exterior derivative equations.
The command LieAlgebraData is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form LieAlgebraData(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-LieAlgebraData(...).
Examples
Example 1.
In this example we create a Lie algebra data structure for a Lie algebra called Ex1 from a list of structure equations for the exterior derivatives of the dual 1-forms.
The structure equations contain arbitrary constants a, b, and c and we determine for which values of these parameters the Jacobi identities actually hold.
First we create the list of structure equations. The variables theta1, theta2, and theta3 must be unassigned names. They simply serve as place-holders for the purpose of entering in the structure equations.
We conclude that the structure equations define a Lie Algebra for arbitrary a, with b = c = 0.
See Also
DifferentialGeometry, LieAlgebras, ExteriorDerivative, LieAlgebraData, LieBracket, Query[Jacobi]
Download Help Document