Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[Derivations] - find the inner and/or Outer derivations of a Lie algebra
Calling Sequences
Derivations(Algname, "keyword")
Parameters
Algname - (optional) name or string, the name of a Lie algebra
keyword - one of the 3 keywords "Inner", "Full", or "Outer"
Description
A matrix A is a derivation for g if the associated linear transformation mapping g to g satisfies A([x, y]) = [A(x), y] + [x, A(y)] for all x, y in g. The set of all derivations defines a matrix Lie algebra Derivations(g). For each x in g the matrix A= ad(x) defines a derivation -- these are the inner derivations Derivations(g, "Inner"). The inner derivations define an ideal in Derivations(g) and the quotient Lie algebra Derivations(g)/Derivations(g, "Inner") is the Lie algebra of outer derivations.
Derivations(Algname, "Inner") returns a list of linearly independent matrices which defines a basis for the Lie algebra of inner derivations for the Lie algebra Algname.
Derivations(Algname, "Full") returns a list of linearly independent matrices which defines a basis for the Lie algebra of all derivations for the Lie algebra Algname.
Derivations(Algname, "Outer") returns a list of linearly independent matrices which gives a representative list of the outer derivations for the Lie algebra Algname.
If the first (optional) argument Algname is missing, then the derivations of the current Lie algebra are computed.
The command Derivations is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Derivations(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Derivations(...).
Examples
Example 1.
First initialize a Lie algebra and display the Lie bracket multiplication table.
For the Lie algebra Alg1 we find that Derivations(Alg1, "Inner") is 4 dimensional and Derivations(Alg1) is 8 dimensional.
We can study the properties of Derivations(Alg1) by initializing these matrices as a Lie algebra. We use as a basis for Derivations(Alg1) the inner and outer derivations.
We see that the derivation algebra is solvable.
We check that the vectors [E1, E2, E3, E4] (corresponding to the inner derivations) define an ideal.
We compute the quotient algebra of outer derivations.
See Also
DifferentialGeometry, LieAlgebras, Adjoint, Query, Query[Derivation], Query[Ideal], Query[Solvable], QuotientAlgebra
Download Help Document