Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[VerticalHomotopy] - apply the vertical homotopy operator to a bi-form on a jet space
Calling Sequences
VerticalHomotopy(omega)
Parameters
omega - a differential bi-form on the jet space J^k(R^n, R^m)
Description
Let omega be a bi-form of degree (r, s) on J^k(R^n, R^m). Then omega is called dV closed if dV(omega) = 0 where dV denotes the vertical exterior derivative and dV exact if there exists a bi-form eta of degree (r, s - 1) on J^l(R^n, R^m) such that omega = dV(eta).
If dV(omega) = 0 then there are numerous algorithms for finding a bi-form eta such that omega = dV(eta). One approach is to use the vertical homotopy operators. These homotopy operators are very similar to the usual homotopy operators for the deRham complex.
The optional arguments available to DeRhamHomotopy can be invoked with VerticalHomotopy.
If omega is a bi-form of degree (r, s) with s > 1, then VerticalHomotopy(omega) returns a bi-form of degree (r, s - 1).
The command VerticalHomotopy is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form VerticalHomotopy(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-VerticalHomotopy(...).
Examples
with(DifferentialGeometry): with(JetCalculus):
Example 1.
Create the jet space J^3(E) for the bundle E = R^2 x R with coordinates (x, y, u) -> (x, y).
DGsetup([x, y], [u], E, 1):
Show that the Euler-Lagrange form for omega1 is 0 so that omega1 is dH exact.
omega1 := evalDG(Cu[] &w Cu[1] &w Cu[2]);
VerticalExteriorDerivative(omega1);
Apply the vertical homotopy operator to omega1.
eta1a := VerticalHomotopy(omega1);
Check that the vertical exterior derivative of eta1a gives omega1.
omega1 &minus VerticalExteriorDerivative(eta1a);
Alternatives to eta1a can be obtained using the path = "zigzag" option for the VerticalHomotopy command.
eta1b := VerticalHomotopy(omega1, path = "zigzag");
eta1b := VerticalHomotopy(omega1, path = "zigzag", variableorder = [u[1], u[2], u[], u[1, 1], u[1, 2], u[2, 2]]);
See Also
DifferentialGeometry, JetCalculus, HorizontalExteriorDerivative, HorizontalHomotopy, VerticalExteriorDerivative, ZigZag
Download Help Document