Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[HorizontalExteriorDerivative] - calculate the horizontal exterior derivative of a bi-form on a jet space
Calling Sequences
HorizontalExteriorDerivative(omega)
Parameters
omega - a differential bi-form on the jet space of a fiber bundle E -> M
Description
Every differential form on a jet space can be expressed as a sum of wedge products of 1-forms on M and contact 1-forms. A differential form omega is called a bi-form of degree (r, s) if it is a sum of wedge products of r 1-forms on M and s contact 1-forms. Alternatively, omega is of type (r, s) if omega(X_1, X_2, ... X_(r + s)) = 0 whenever more than r of the vector fields X_i are total vector fields or more than s of the vector fields X_i are vertical vector fields on J^k(E) -> M. The non-negative integer r is called the horizontal degree of omega. The non-negative integer s is called the vertical degree of omega.
If omega is called a bi-form of degree (r, s), then its exterior derivative d(omega) is a sum of two bi-forms, one of type (r + 1, s), the other of type (r, s + 1). The type (r + 1, s) part is called the horizontal exterior derivative of omega and is denoted by dH(omega). The type (r, s + 1) part is called the vertical exterior derivative of omega and is denoted by dV(omega). Thus d(omega) = dH(omega) + dV(omega) from which it follows that dH^2 = 0, dH dV = - dV dH and dH^2 = 0.
If (x^i) are local coordinates on M and D_i denotes total differentiation with respect to x^i, then dH(omega) = D_i(omega) Dx^i.
The command HorizontalExteriorDerivative is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HorizontalExteriorDerivative(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HorizontalExteriorDerivative(...).
Examples
Example 1.
Create the jet space J^2(E) for the bundle E = R^2 x R^2 with coordinates (x, y, u, v) -> (x, y).
Calculate the horizontal exterior derivative of a function.
Calculate the horizontal exterior derivative of a type (1, 0) bi-form.
Calculate the horizontal exterior derivative of a type (0, 2) bi-form.
See Also
DifferentialGeometry, JetCalculus, VerticalExteriorDerivative, HorizontalHomotopy, VerticalHomotopy
Download Help Document