Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[DifferentialEquationData] - create a data structure for a system of differential equations
Calling Sequences
DifferentialEquationData(EqList, VarList)
Parameters
EqList - a list of functions on a jet space defining a system of differential equations
VarList - a list of jet space coordinates such that the equations in EqList may be solved algebraically for these coordinates
Description
In the jet bundle approach to the geometric theory of differential equations, a system of k-th order differential equations is represented by a sub-manifold R^k of a jet space J^k(E), where E -> M is a fiber bundle. A solution to the differential equation defined by the sub-manifold R^k is a section s: M -> E whose jets j^k(s) take values in R^k.
The DifferentialEquationData command creates an internal data structure which allows for the subsequent manipulation of the system of differential equations. The differential equations can be formally prolonged to higher order jet spaces using the Prolong command. The imbedding phi: R^k -> J^k(E) can be constructed using the Transformation command.
The command DifferentialEquationData is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form DifferentialEquationData(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-DifferentialEquationData(...).
Examples
Example 1.
Create a space of 2 independent variables and 1 dependent variable.
Define the differential equation data structure for the Sine-Gordon equation u_{xy} = sin(u).
Let's prolong the equation once. We get 3 equations which can be solved for u[1, 1], u[1, 2], u[2, 1].
Now we can turn DE1 into a transformation.
Show that the function f vanishes on solutions to the Sine-Gordon equation.
See Also
DifferentialGeometry, JetCalculus, Prolong, Pullback, Transformation
Download Help Document