Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GroupActions[LiesThirdTheorem] - find a Lie algebra of pointwise independent vector fields with prescribed structure equations (solvable algebras only)
Calling Sequences
LiesThirdTheorem(Alg, M, option)
LiesThirdTheorem(A, M)
Parameters
Alg - a Maple name or string, the name of an initialized Lie algebra g
M - a Maple name or string, the name of an initialized manifold with the same dimension as that of g
option - with output = "forms" the dual 1-forms (Maurer-Cartan forms) are returned
A - a list of square matrices, defining a matrix Lie algebra
Description
Let g be an n-dimensional Lie algebra with structure constants C. Then Lie's Third Theorem (see, for example, Flanders, page 108) asserts that there is, at least locally, a Lie algebra of n pointwise independent vector fields Gamma on an n-dimensional manifold M with structure constants C.
The command LiesThirdTheorem(Alg, M) produces a globally defined Lie algebra of vector fields Gamma in the special case that g is solvable. More general cases will be handled in subsequent versions of the DifferentialGeometry package.
The command LiesThirdTheorem(A, M) produces a globally defined matrix of 1-forms (Maurer-Cartan forms) in the special case that the list of matrices A defines a solvable Lie algebra.
The command LiesThirdTheorem is part of the DifferentialGeometry:-GroupActions package. It can be used in the form LiesThirdTheorem(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-LiesThirdTheorem(...).
Examples
Example 1.
We obtain a Lie algebra from the DifferentialGeometry library using the Retrieve command and initialize it.
We define a manifold M of dimension 4 (the same dimension as the Lie algebra).
We calculate the structure equations for the Lie algebra of vector fields Gamma1 and check that these structure equations coincide with those for Alg1.
Example 2.
We re-work the previous example in a more complicated basis. In this basis the adjoint representation is not upper triangular, in which case LiesThirdTheorem first calls the program SolvableRepresentation to find a basis for the algebra in which the adjoint representation is upper triangular. (Remark: It is almost always useful, when working with solvable algebras, to transform to a basis where the adjoint representation is upper triangular.)
Example 3.
Here is an example where one of the adjoint matrices has complex eigenvalues. The Lie algebra contains parameters p and b.
Example 4.
We calculate the Maurer-Cartan matrix of 1-forms for a solvable matrix algebra, namely the matrices defining the adjoint representation for Alg1 from Example 1.
Note that the elements of this matrix coincide with the appropriate linear combinations of the forms in the list from Example 1.
See Also
DifferentialGeometry, GroupActions, Library, LieAlgebras, Representation, Adjoint, LieAlgebraData, Representation, Retrieve, SolvableRepresentation
Download Help Document