Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[ExteriorDerivative] - take the exterior derivative of a differential form
Calling Sequence
ExteriorDerivative(omega)
Parameters
omega
-
a Maple expression or a differential form
Description
The exterior derivative of a differential p-form omega is a differential form d(omega) of degree p + 1. There are two standard ways to intrinsically define the exterior derivative d.
The exterior derivative can be defined directly in terms of the Lie bracket. For a 1-form alpha and a 2-form beta this definition is:
d(alpha)(X, Y) = X(alpha(Y)) - Y(alpha(X)) - alpha([X, Y]),
d(beta)(X, Y, Z) = X(beta(Y, Z)) - Y(beta(X, Z)) + Z(beta(X, Y)) - X(beta([Y, Z])) + Y(beta([X, Z ])) - Z(beta([X, Y])),
where X, Y, Z are vector fields. Most of the references listed on the DifferentialGeometry References page contain the general formula for the exterior derivative of a p-form.
Alternatively, d can be defined uniquely as that linear operator acting on differential forms such that:
[i] for functions f, d(f)(X) = X(f), where X is any vector field;
[ii] d(alpha &w beta) = d(alpha) &w beta + (- 1)^p alpha &w d(beta), where alpha and beta are differential forms and p is the degree of alpha; and
[iii] d(d(alpha)) = 0.
The explicit coordinate formulas for the exterior derivatives of a function, a 1-form and a 2-form in 3 dimensions are given in Example 1.
The ExteriorDerivative command can also be applied to a list of differential forms.
This command is part of the DifferentialGeometry package, and so can be used in the form ExteriorDerivative(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-ExteriorDerivative.
Examples
Example 1.
We initialize a 3-dimensional manifold with coordinates [x, y, z].
We use the declare command in PDEtools to display the partial derivatives of the functions a(x, y, z), b(x, y, z) and c(x, y, z) in compact form.
The exterior derivative of a function:
The exterior derivative of a 1-form:
The exterior derivative of a 2-form:
Example 2.
By way of an example, we illustrate the fact that d^2 = 0.
Example 3.
The ExteriorDerivative command can also be applied to a list of forms or a matrix of forms.
Example 4.
The ExteriorDerivative command can also be used with adapted frames. First we define an adapted coframe for M.
Example 5.
The ExteriorDerivative command can be used with Lie algebras.
Example 6.
The ExteriorDerivative command can also be used with abstract differential forms.
See Also
DifferentialGeometry, LieBracket, DeRhamHomotopy, PDEtools[declare]
Download Help Document