Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[ApplyTransformation] - evaluate a transformation at a point
Calling Sequence
ApplyTransformation(Phi, pt)
Parameters
Phi
-
transformation from a manifold M to another manifold N
pt
a list of coordinates or a list of equations defining a point in the domain manifold M
Description
ApplyTransformation(Phi, pt) returns the coordinates of the point Phi(pt) in N.
The second argument is of the form [a1, a2, ...] or [x1 = a1, x2 = a2, ...], where x1, x2, ... are the coordinates on M.
This command is part of the DifferentialGeometry package, and so can be used in the form ApplyTransformation(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-ApplyTransformation.
Examples
Example 1.
Define coordinate systems M and N.
Define a transformation Phi from M to N.
Apply the transformation Phi to the points p1, p2.
See Also
DifferentialGeometry, Transformation
Download Help Document