Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[RationalCanonicalForm] - construct two differential rational canonical forms of a rational function
Calling Sequence
RationalCanonicalForm[1](F, x)
RationalCanonicalForm[2](F, x)
Parameters
F
-
rational function of x
x
variable
Description
Let F be a rational function of x over a field K of characteristic 0. The RationalCanonicalForm[i](F,x) calling sequence constructs the ith differential rational canonical forms for F, .
If the RationalCanonicalForm command is called without an index, the first differential rational canonical form is constructed.
The output is a sequence of 2 elements , called RationalCanonicalForm(F), where are rational functions over K such that
.
If the third optional argument, which is the name 'polyform', is given, the output is a sequence of 4 elements , where are polynomials over K, monic such that , .
The use of RationalCanonicalForm[1] is for testing similarity of two given hyperexponential functions. For RationalCanonicalForm[2], the polynomials are also pairwise relatively prime. RationalCanonicalForm[2] is used in a reduction algorithm for hyperexponential functions.
Examples
See Also
DEtools[AreSimilar], DEtools[MultiplicativeDecomposition], DEtools[PolynomialNormalForm], DEtools[ReduceHyperexp], SumTools[Hypergeometric][RationalCanonicalForm]
References
Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational canonical forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press, (2004): 183-190.
Download Help Document