Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[symmetrize] - symmetrize the components of a tensor over any of its indices
tensor[antisymmetrize] - antisymmetrize the components of a tensor over any of its indices
Calling Sequence
symmetrize(T, [i1, i2, ... ])
antisymmetrize(T, [i1, i2, ... ])
Parameters
T
-
object whose components are being symmetrized/antisymmetrized
i1, i2, ...
indices of T of identical index character to symmetrize/antisymmetrize over
Description
Given any tensor_type, T, of rank 2 or more, and a list of indices (positive integers) of T of identical covariant/contravariant character, , the command symmetrize(T, [i1, i2, ... ]) computes the components of T symmetrized over the indices . Similarly, the command antisymmetrize(T, [i1, i2, ... ]) computes the components of T antisymmetrized over the indices .
Note that it is imperative that the indices given in the list all be of identical index character. It is not possible to symmetrize/antisymmetrize over indices of mixed type.
Also note that T must be of rank 2 or greater and that the number of indices given in the list must not exceed the rank of T and must be at least two.
For example, if T is a rank 3 tensor with index character , then symmetrize (T, [1,3]) would compute:
for each component , and antisymmetrize(T, [1,3]) would compute:
for each component . The call symmetrize(T,[1,2]) would generate an error since the first and second indices of T are of opposite index character.
If all of the indices of T are specified, then the result will be totally symmetric/antisymmetric. In this case, the components of the result are declared using the Maple symmetric/antisymmetric indexing function.
Simplification: Because these operations involve merely taking linear combinations of the components of T, the routine `tensor/lin_com/simp` is used once on each component of the result after all of the terms have been added.
This function is part of the tensor package, and so can be used in the form symmetrize(..) only after performing the command with(tensor) or with(tensor, symmetrize). The function can always be accessed in the long form tensor[symmetrize](..).
Examples
Define a rank 3 tensor_type with "symbolic" components.
Symmetrize T over its first two indices.
Anti-symmetrize T over all of its indices -- note that the result is totally antisymmetric.
Now define a symmetric rank 2 tensor (again with symbolic components).
Because g it totally symmetric, if you antisymmetrize it, you should get zero.
See Also
tensor, tensor/lin_com
Download Help Document