Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[Levi_Civita] - compute the covariant and contravariant Levi-Civita pseudo-tensors
Calling Sequence
Levi_Civita(detg, dim, cov_LC, con_LC)
Parameters
detg
-
determinant of the covariant metric tensor components
dim
dimension of the space
cov_LC
output parameter for the covariant Levi_Civita pseudo tensor
con_LC
output parameter for the contravariant Levi_Civita pseudo tensor
Description
The function Levi_Civita(detg, dim, cov_LC, con_LC) computes the Levi-Civita pseudo-tensor in the dimension dim using the metric determinant detg. The covariant Levi-Civita tensor is output via the parameter cov_LC and the contravariant Levi-Civita tensor is output via the parameter con_LC. The return value is NULL.
detg must be an algebraic type. It can be computed from the covariant metric tensor using tensor[invert]. Because the square root of detg is used in computing the components of the results, it is assumed that detg is positive (except in the case where dim=4, where it is assumed to be negative; see below).
dim must be an integer greater than 1.
cov_LC and con_LC must be unassigned names to be used as output parameters for the results. Recall that the Levi-Civita pseudo-tensor is equal to the permutation symbol multiplied by a factor involving the square root of detg. cov_LC is the covariant permutation symbol multiplied by square root of detg and con_LC is the contravariant permutation symbol multiplied by the reciprocal of the square root of detg (except in the case where dim=4; see below).
In the case where the dimension is 4, it is assumed that the geometry is for Relativity applications, in which case, detg is assumed to be negative. Thus, a factor of is used in computing the covariant components and a factor of is used in computing the contravariant components.
Indexing Function: the results are completely anti-symmetric; their component arrays use Maple's antisymmetric indexing function.
Examples
Compute the Levi-Civita pseudo-tensor in the Schwarzschild geometry of Relativity:
cov_LC and con_LC are totally antisymmetric:
The Levi-Civita components for the Poincare half-plane:
See Also
DifferentialGeometry[Tensor][PermutationSymbol], linalg[det], tensor, tensor[invert]
Download Help Document