Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
polylog - general polylogarithm function
Calling Sequence
polylog(a, z)
Parameters
a
-
expression
z
Description
The polylogarithm of index a at the point z is defined by
if and by analytic continuation otherwise. The index a can be any complex number. If , the point is a singularity.
For all indices a, the point is a branch point for all branches, and in Maple, the branch cut is taken to be the interval (). For the branches other than the principal branch (which is given on the unit disk by the series above, and hence is analytic at 0), the point is also a branch point, and the branch cut is taken to be the negative real axis. The formula for a particular branch can be determined with the following rules:
Each time the branch cut () is crossed in the counterclockwise direction, subtract . Add this quantity if the branch cut is crossed in the clockwise direction.
Each time the branch cut () is crossed in the counterclockwise direction, add to each term in the current formula. Subtract this quantity if the branch cut is crossed in the clockwise direction.
For example, if one traverses a path which starts at , goes clockwise around , then counterclockwise around , then clockwise around again to return at , the formula for the branch of polylog thus obtained would be
where polylog(a, z) indicates the principal branch and means the principal branch of the logarithm.
Maple only evaluates the principal branch.
Maple's dilog function is related to polylog by the relation .
Examples
See Also
assume, combine/polylog, diff, dilog, evalf, expand, initialfunctions, RealRange
References
Lewin, L. Polylogarithms and Associated Functions. Amsterdam: North Holland, 1981.
Download Help Document