Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
permgroup - represent a permutation group
Calling Sequence
permgroup(deg, gens)
Parameters
deg
-
degree of the permutation group
gens
set of generators for the permutation group
Description
The function permgroup is used as a procedure and an unevaluated procedure call. As a procedure, permgroup checks its arguments and then either exits with an error or returns the unevaluated permgroup call.
The first argument is the degree of the group, and should be an integer. The second argument is a set of group generators. Each generator is represented in disjoint cycle notation. The generators may be named or unnamed. A named generator is an equation; the left operand is the generator's name, the right operand is the permutation in disjoint cycle notation.
A permutation in disjoint cycle notation is a list of lists. Each sub-list represents a cycle; the permutation is the product of these cycles. The cycle represents the permutation which maps to , to , ..., to , and to . The identity element is represented by the empty list .
The permgroup function follows the convention that ``permutations act on the right''. In other words, if and are permutations, then the product of and , is defined such that for .
Examples
the following is not legal:
Error, (in permgroup) generators must represent products of disjoint cycles, but [[7, 2]] does not
See Also
grelgroup, subgrel
Download Help Document