Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
evalm - evaluate a matrix expression
Calling Sequence
evalm(matrix expression)
Parameters
matrix expression
-
expression
Description
Important: The evalm command has been deprecated. Matrix algebra expressions involving Matrices such as are evaluated directly, eliminating the need for the additional step of applying evalm. For additional information, see Linear Algebra Computations in Maple.
The function evalm evaluates an expression involving matrices. It performs any sums, products, or integer powers involving matrices, and will map functions onto matrices.
Note that Maple may perform simplifications before passing the arguments to evalm, and these simplifications may not be valid for matrices. For example, evalm(A^0) will return 1, not the identity matrix.
Unassigned names will be considered either symbolic matrices or scalars depending on their use in an expression.
To indicate non-commutative matrix multiplication, use the operator &*. The matrix product ABC may be entered as or as , the latter being more efficient. Automatic simplifications such as collecting constants and powers will be applied. Do NOT use the * to indicate purely matrix multiplication, as this will result in an error. The operands of &* must be matrices (or names) with the exception of 0. Unevaluated matrix products are considered to be matrices. The operator &* has the same precedence as the * operator.
Use 0 to denote the matrix or scalar zero. Use to denote the matrix identity. It may be convenient to use alias(Id=&*()).
If a sum involves a matrix and a Maple constant, the constant will be considered as a constant multiple of the identity matrix. Hence matrix polynomials can be entered in exactly the same fashion as fully expanded scalar polynomials.
Examples
See Also
alias, array(deprecated), linalg(deprecated), Matrix, matrix(deprecated), operator
Download Help Document